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ABSTRACT 

Uncertainty assessment in CFD (computational fluid dynamics) ultimately relies on the estimation of the true 
discretization error defined as the difference between the exact (unknown) solution to the partial differential 
equation and the numerical solution obtained from a discretized equation on a certain grid represented by the 
computational cell size, h. The commonly used Richardson extrapolation to zero-grid size to determine the 
extrapolated exact solution has limited success and requires intensive calculations on at least three and 
sometimes up to 5 or 6 grids. Even then questions related to oscillatory convergence or divergence, the 
anomalies concerning the observed (or apparent) order of the computations can not be resolved. The 
technique proposed in this study attempts to avoid much of the difficulties of Richardson extrapolation by 
focusing on reliable estimators for the local true error. The technique is based on the refinement of ideas 
presented by Celik and Li [1] concerning the relation between the approximate error and the true error. The 
relations used in the present study are derived using theoretical considerations. The proposed method is 
verified using manufactured solutions for 1D and 2D scalar transport, for boundary layer type flows as well 
as for flows representative of the commonly used backward-facing step bench-mark. If the reliability of this 
technique can be demonstrated for more complex problems it will open many opportunities beyond 
uncertainty estimation such as adaptive grid refinement. 

1.0  INTRODUCTION 

Along with the exponential increase in applications of CFD the interest in formulating some kind of quality 
control on the CFD solutions has increased. Starting with ASME (American Society of Mechanical 
Engineers), many professional organizations have followed suit and implemented policies for ‘statement of 
uncertainty’ in CFD results. The uncertainty measures are usually based on some error estimates.  The errors 
are primarily related to iteration convergence, grid convergence, and modeling errors among many others.  
This paper focuses on grid-convergence error also referred to as discretization errors. The iteration errors can 
be significant [2, 3, 4, 5] however, in this work we reduce them to very small values so that they do not 
pollute the solution, hence the dominant numerical error is associated with discretization. 
 
The recommended method for discretization error estimation is the RE (Richardson extrapolation) method. 
Since its first elegant application by its originator Richardson [6, 7], this method has been studied by many 
authors. Its intricacies, shortcomings and generalization have been widely investigated. A short list of 
references given in the bibliography [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] is selected for the direct relevance of 
these references to the subject, and for brevity. But, the RE method is far from perfect. The local RE values of 
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the predicted variables may not exhibit a smooth, monotonic dependence on grid resolution, and in a time-
dependent calculations, this non-smooth response becomes a function of time and space. Nonetheless, it is 
currently the most robust method available for the prediction of numerical uncertainty. The method presented 
here can be considered as a variant of RE with more desirable features. 
 
Since there are many ways for estimating numerical uncertainty and errors, which are based on certain 
assumptions, such as monotonic convergence, and being in the asymptotic range in case of RE, it is 
imperative that these methods be also validated using some benchmarks. This need has clearly become 
apparent during the First Workshop on CFD Uncertainty Analysis in Lisbon [18]. These benchmarks should 
be analytical solutions that resemble those of Navier-Stokes equations for a class of flow problems. In the 2nd 
Lisbon Workshop [19] a boundary-layer type of analytical solution was used to test various error and 
uncertainty estimators. Most methods performed well for this relatively simple grid on relatively fine meshes. 
The question remained that what would be the outcome for a relatively more complex problems such as the 
separated flow over a backward facing step on relatively coarse grids. 
 
It is this question that we attempt to answer in this current work.  To do this we needed an analytical solution 
that resembled the well known flow over backward facing step. This is developed first, then a commercial 
software is used to obtain the solution on various set of grids and the error estimators are applied to the results 
with the aim of estimating the discretization error. The results from the case with a boundary-layer type flow 
are also presented for comparison.  
 

2.0 ERROR ESTIMATION METHODS 

The method developed to predict the true error is a variant of the extrapolation method proposed by Celik et 
al. [1, 20] named Approximate Error Spline method (AES). This method assumes that the true error, Et is 
proportional to the approximate error, Ea, as shown by the following equation 
 h

a
h
t cEE =  (1) 

where the true error is defined by 
 h

h
tE φφ −=  (2) 

and the approximate error given as 
 hh

h
aE αφφ −=  (3) 

 
In Eqs. (2 and 3) α is the grid refinement or coarsening factor i.e. α1=h2/h1, α2=h3/h2, etc., where hi represents 
the average grid size, also 321 hhh <<   which means that subscript “1” denotes the smallest grid size (fine 
grid) and subscript “3” the coarsest grid. 
  
In order to apply Eq. (1) three grid calculations (triplet) are needed. The post-processing of the numerical 
calculations and making use of Eq. (1) enables determination of the proportionality constant c. This global 
constant c is calculated from the local constants as follows 

 
1 2
, ,1

2
i j i jc c

c
N

∞ ∞
+

=   (4) 

 
where N is the total number of grid points and    
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i j i j

i j i j i j i jc φ φ
φ φ φ

−
=

− +
 (5b)  

 
Note that Eqs. (5a) and (5b) represent the proportionality constant using the finest triplet (1, 2, 3) but the 
method is not limited to the use of that triplet, however the use of the finest triplet is expected to give a more 
accurate estimation of the true error. 
 
 

3.0 DESIGN OF APPROXIMATE SOLUTIONS 

3.1 Case-3: Boundary-layer type flow: 
We employ the method of manufactured solutions proposed by Roache [22] to obtain approximate solutions to 
Navier-Stokes equations. The solution to Case-3 (Boundary-layer type flow), was derived with the help of D. 
Pelletier (private communication) and published in [19], hence details will not be repeated here. The analytical 
expressions used for the velocity components, and pressure are as follows: 
 
The x-velocity component is given by 
 )(ηerfu =  (6) 
where the dimensionless variable η is given by 

 
x
yση = ; 4.0σ =  (7) 

The y- velocity component is given as follows 

 ( )2

11 η

πσ
υ −−= e  (8) 

while the pressure field is 
 ( ) ( )25.134ln25.02ln5.0 232

2 +−+−== yyxx
U
PC

ref
p ρ

 (9) 

Equations (6) to (9) represent dimensionless quantities but all the reference quantities were selected as unity. 
Therefore the dimensionless and dimensional quantities are equivalent.  
 

3.2 Case-4: Separated flow 
For the case of separated flows (Case-4), we work with a two-dimensional stream function so that the derived 
velocity components automatically satisfy continuity. The stream function, ψ , is decomposed in to two parts, 
one satisfying the boundary conditions, ψb, and the other is a solution that does not contribute to flow rate and 
satisfies homogeneous boundary conditions, namely, ψs  
 
 b sψ ψ ψ= +    (10) 
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We let 
 
 ( )1b b b b bf g g hψ = + −    (11)  
 

Such that fb and hb are functions of 
y
H

η =  where H is the channel height, and gb is only a function of 
x
L

ε =  

where L is the channel length; fb and gb satisfying the following conditions 
 
 ( ) ( ) ( ) ( )0 0 0, 1 1, 1 0b b b bf f f f′ ′= = = =    (12)         

 ( ) ( ) ( )0 1, 0 0, 1 0b b bg g g′= = =  
 
Therefore bf ′ represents the axial velocity at the inlet and bh′  represents the axial velocity profile at the outlet. 
Thus no-slip velocity condition at the walls, i.e, 0η =  and 1η =   are also satisfied. 
Then we select   

 ( ) ( )212sin
2bf e α ηπη η − − =  

 
   (13) 

Where 
( )

*

21 s

αα
η

=
−

 and α* is a constant and set to 9.0. 

and 

 ( ) 2sin
2bh πη η =  

 
   (14) 

 

 ( ) 2cos
2bg πε ε =  

 
   (15)  

And further we let  
 s s sf gψ =    (16) 
   
where the functions fs and gs are given below 
 
 ( ) ( ) ( )22, 1s sf A hη ε η ε η η = − −     (17)  

where A=10 and hs(ε) is given as 

 ( )
1 cos

( )
2

0 ( )

r
s step r

r

h

επ
εε η ε ε

ε ε

  
+    = ≤


 >

   (18) 

 
and εr is the dimensionless reattachment length of the flow. 
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 ( ) ( ) 222 1sg B e βεε ε ε −= −    (19) 

where 
*

2
r

ββ
ε

= . β* and B are constants and set to 5.0 and 100, respectively. 

The corresponding velocity components are given by  
 

 u
y
ψ∂

=
∂

  and  v
x
ψ∂

= −
∂

 (20) 

 
The corresponding source gradients are determined from the Navier Stokes equation using the above 
expressions for the axial (u) and stream-wise (v) velocities. These velocities can be found in Appendix A more 
explicitly. These sources may or may not represent pressure gradient terms. They will correspond to a 
pressure field only if the vorticity transport equation is satisfied, otherwise these terms may be interpreted as 
contributions from other phenomena such as turbulence modeling. 
 

4.0  APPLICATION 

4.1  Case-1: One-Dimensional Scalar Transport Equation 
The one dimensional steady scalar transport equation given by 
 
 L x xxPe Sφφ φ= +  (21)  
 
has the following analytical solution 
 

 
( ) ( )

( )
exp exp

1 exp
L L

L

Pe Pe
Pe

ε
φ

−
=

−
 (22) 

 
where the Peclet number is defined as LPe uL= Γ .  Nondimensional length, ε is taken as x Lε = ,  L being 
the total length of the domain. 
 
The grids (triplet) used to solve numerically the 1-D scalar transport equation consisted of 11, 21 and 41 
nodes.  These grids are referred from now on as coarse, medium and fine grid respectively. The analytical 
solution along with the numerical solution on the three grids is shown in Fig. 1. As can be seen from the 
figure, numerical solution approaches to the analytical solution as the grid is refined (i.e. fine grid).  Fig. 2 
illustrates a comparison of true, approximate, and estimated error calculated on different grids and by different 
methods.  
 
The equations used to calculate the true error and approximate error on the medium grid are given by 
 

 ;            fm ana num fm num num
t fm m a fm mE Eφ φ φ φ= − = −  (23a) 

 
where the subscripts and/or superscripts f, m, c mean fine, medium and coarse grid. When the 
subscripts/superscripts shown above appear together it means that the first grid (on the left) was interpolated 
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to the second grid (on the right). The superscripts ana and num denote analytical and numerical solutions 
respectively. Also the subscripts a and t denote approximate and true respectively. Similarly the true and 
approximate error on the coarse grid are calculated by 
 

;            mc ana num mc num num
t mc c a mc cE Eφ φ φ φ= − = −  (23b) 

 
One of the two estimated errors presented in Fig. 2 is based on the local value of the proportionality constant 
as described by Eq. (5), and the other one is calculated using a uniform proportionality constant over the 
whole domain whose value calculated with Eq. (4) is 1.37 in this case. The reasoning of the latter case is that 
the true error is proportional to the approximate error, then for engineering calculations it would be 
advantageous to use such a global proportionality constant which in fact bounds the true error while the local 
constant does not. Another advantage would be that the calculation of the local proportionality constant in real 
engineering cases (e.g. three dimensional complex flow problems) would be complicated and expensive from 
the computational point of view.  
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Figure 1: Analytical and numerical scalar solutions on 

three different grids 
Figure 2: True error, approximate error and estimated error 

on the solution of the scalar  
 
 

4.2  Case-2: Two-Dimensional Scalar Transport Equation 
A generic scalar field, in two dimensions, is solved using the fixed flux approach in Fluent. Here the velocity 
field is prescribed, and the analytical solution is forced using the method of manufactured solution. Dirichlet 
boundary conditions were prescribed for the solution of this equation. For the case of incompressible, two-
dimensional flow the velocity field is given by the following analytic functions such that they satisfy the 
equation of continuity. 
 

 ( ) ( ) ( )* * * * *

exp

2 sin 2 1
and

Hu y y y x x
H

π
 

= − − −  
 

 (24) 

 ( ) ( ) exp* *1 cos 2 1 1 2
2

andH
v y x

L
π

π
    = − − −        

 (25) 
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In Eq. (24) and Eq. (25) non-dimensional coordinates x* and y* are defined by 
 

 * stepx x
x

L
−

=  ; *

expand

yy
H

=    (26) 

 
The scalar field is given by the following expression composed of functions of x and y 
 
 ( ) ( ) ( ) ( )1f x f y C f y g xφ = +  (27) 
 
where the functions in  Eq. (27) are defined below 
 
  ( ) ( ) ( )cos cosx xf x w w=   ; *

x freqw w x=  ;  0.5freqw π=    (28a) 

 ( ) ( )2 2* *1f y y y= −  (28b) 

 ( ) ( )2 2* *1g x x x= −  (28c) 

 
Finally the source term for the scalar transport equation can be determined using Eqs. (24) to (28) and their 
derivatives 
 
 ( )x y UDSI xx yySource u v Cφ φ φ φ= + − +  (29) 
 
Where CUDSI denotes the user defined transport (diffusivity/conductivity) coefficient.  
 
The set of three grids used to solve the two-dimensional scalar transport equation numerically is 
20 20, 40 40, and 80 80× × × . In Fig. 3 and 4 the true error and approximate error is presented.  
 
Fig. 3 represents the case when the scalar transport equation is dominated by convection. As can be seen the 
proportionality constant between the true error on the medium grid and the approximate error between fine 
and medium grid is close to 2.5 (Figs. 3(a) and 3(b)); this constant between the true error on the coarse grid 
and the approximate error between medium and coarse grid is around 2.25. The proportionality constant 
calculated from Eq. (4) is 2.52 for the case mentioned above and shown in Fig. 3. Therefore it can be said that 
the true error can be estimated and bounded using the proportionality constant reported above along with the 
approximate error.  Similarly in the diffusion dominated case (Fig. 4) the true error can be bounded by the 
approximate error when the proportionally constant is calculated with Eq. (4) resulting in a value of 1.6. It is 
important to note that the methodology described for the estimation of the true error also bounds the 
interpolation error. 
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Figure 3: Error in scalar when Γ=10-3 (a) True error on medium grid (b) Approximate error between fine and medium grid (c) 
True error coarse grid (d) Approximate error between medium and coarse grid 

 
 

x (m)

y 
(m

)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-3

-2

-1

0

1

2

x 10
-4

 
(a) 

x (m)

y 
(m

)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-2

-1

0

1

2

x 10
-4

 
(b) 

x (m)

y 
(m

)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1

-0.5

0

0.5

1
x 10

-3

 
(c) 

x (m)

y 
(m

)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-8

-6

-4

-2

0

2

4

6

8
x 10

-4

 
(d) 

Figure 4: Error in scalar when Γ=10  (a) True error on medium grid (b) Approximate error between fine and medium grid (c) 
True error coarse grid (d) Approximate error between medium and coarse grid 
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4.3  Case-3: Boundary-layer type flow 
The computational domain for the manufactured solution is a square with the following dimensions: 0.5 ≤ x ≤ 
1 and 0 ≤ y ≤ 0.5. Except for the south (bottom) boundary, the boundary conditions prescribed were the 
analytical velocity profiles expressed in terms of x and y components. The south boundary was set as a wall 
with the no-slip condition. In order to predict the true error as shown in Section 2 several cases were run. The 
studied cases differ from each other in their grid density. An orderly grid refinement was done between each 
case. Between cases the average grid size was decreased by a factor of four. 
 
The selected grids were structured, non-uniform with an expansion ratio of 0.95 in y-direction. The grid in y-
direction is finer near the south boundary in order to predict, with reasonable accuracy, the velocity gradients 
inside the wall boundary layer. Along the x-direction the grid is uniform.  
 
In Fig. 5 the true error and the estimated true error for x-velocity component are shown. Similarly in Figs. 6 
and 7 the error contours for y-velocity component and pressure are presented respectively. The results shown 
in this section are based on the triplet (three grid calculations) 15 15, 30 30 and 60 60× × × . The 
discretization scheme of the convective term is 1st order upwind. As can be seen in Figs. 5, 6 and 7 the 
estimated true errors match qualitatively and quantitatively the true error. The calculated global 
proportionality constants for u velocity, v velocity and pressure given by Eq. (4) are 1.87, 1.58 and 1.26 
respectively. With the proportionality constants mentioned above the estimated true error nearly bounds the 
true error. 
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Figure 5: Error contours for x-velocity component; (a) True error on medium grid,  (b) Estimated true error 
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(b) 

Figure 6 Error contours for y-velocity component; (a) True error on medium grid,  (b) Estimated true error 
            
  

x (m)

y 
(m

)

 

 

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-6

-4

-2

0

2

4

x 10
-3

 
(a) 

x (m)

y 
(m

)

 

 

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-6

-4

-2

0

2

4

x 10
-3
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Figure 7 Error contours for pressure; (a) True error on medium grid, (b) Estimated true error 
 
 

4.4  Case-4: Separated flows (Backward Facing Step) 
Having validated the error estimation technique on aforementioned cases, we applied it to a relatively 
complicated case of flow over a backward-facing step. The physical system under consideration consists of a 
flow past a backward-facing step with expansion ratio 5/4. The step is located at the inlet ( 0x = ) in order to 
simplify geometry and hence the analytical solution. The length, L of the domain is 10 step heights, hsteps. 
 
For an effective Reynolds number ( )Re avg

eff avg step effu h υ=  of 10, based on the step height (hstep=1.0m), and 

average velocity at the inlet (uavr = 0.25m/s), analytical solutions for the axial and vertical velocities were 
obtained by employing Eqs. (10)-(20). These equations had been designed by taking the boundary conditions 
into account. The imposed boundary conditions are 
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0

in
x

u
y
ψ

=

∂
=
∂

        out
x L

u
y
ψ

=

∂
=
∂

    and   0wallu =   (no slip) (30) 

                                 
0

in
x

v
x
ψ

=

∂
= −

∂
      out

x L

v
x
ψ

=

∂
= −

∂
    and  0wallv =    (no slip) (31) 

The governing transport equations were modified by implementing source terms (Sx, Sy) obtained from the 
analytical solution so that the errors induced by different interactions occurring in the flow were damped. 
Derivation of these source terms can be found in Appendix B. Consequently, the x- and y-components of 
modified momentum equation take the following forms, respectively. 

2 2

2 2

1 avg
eff x

u u p u uu v S
x y x x y

υ
ρ

 ∂ ∂ ∂ ∂ ∂
+ = − + + + ∂ ∂ ∂ ∂ ∂ 

  (32) 

2 2

2 2

1 avg
eff y

v v p v vu v S
x y y x y

υ
ρ

 ∂ ∂ ∂ ∂ ∂
+ = − + + + ∂ ∂ ∂ ∂ ∂ 

   (33) 

The source terms in the above equations are evaluated from analytical expressions obtained as the remainder 
of x-momentum and y-momentum equations when the analytical expressions for the velocity components are 
substituted for the convection and diffusion terms. The density appearing in these equations was taken as 
unity. 
 
These equations, subject to the same analytic boundary conditions, were solved together with the continuity 
equation using the commercial CFD package FLUENT 6.3.  
 
At this juncture, it should be noted that for the outlet boundary imposing the velocity boundary condition 
obtained from the analytical solution is crucial because the use of pressure outlet or outflow boundary 
conditions results in incorrect velocity profiles. Comparisons of these velocity profiles are illustrated in Fig. 8.  
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Figure 8: Axial velocity profiles at the outlet for different boundary conditions 
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The convective and diffusive terms in the momentum equations were discretized with first order upwind and 
central difference schemes, respectively. Double precision is used for all the calculations so that the round-off 
errors are minimized. The executions were terminated when the scaled residual for the continuity equation 
approached an asymptotic value. 
 
The numerical error in the calculations was assessed by repeating the numerical computations on a set of three 
grids with different resolutions. For the purpose of the study an orderly grid refinement was carried out by 
doubling the coarser grid. On the whole, nonuniform grids (clustered to the upper and lower walls) with 
resolutions of  200 100, 400 200 and 800 400× × ×  in x and y directions, respectively, were employed in 
this study.  
 
Once the analytical and numerical solutions are obtained for the same conditions, a comparison can be made 
to test their proximity. Figs. 9 and 10 show the velocity fields obtained from analytical and numerical 
solutions on the fine grid, respectively.   
 

 
(a) 

 
(a) 

 
(b) 

 
(b) 

Figure 9: Velocity field from analytical solution  
(a) Axial velocity, (b) Vertical velocity 

Figure 10: Velocity field from numerical solution on the  
(800x400) grid 

(a) Axial velocity, (b) Vertical velocity 
 
The excellent agreement between the fine grid solution and the analytical solution is a strong indication of the 
quality of the analytical solution and it shows that as the grid is refined the numerical solution approached the 
exact solution satisfying the consistency condition for the numerical scheme used.  This is also an indication 
that the analytical solution can be confidently used as an exact solution for error estimation purposes.  
 
In a way similar to the boundary layer flow, the true errors and approximate errors in the axial and vertical 
velocity distributions were calculated and depicted in Figs. 11 and 12, respectively. Although there is good 
qualitative agreement between the true error and the approximate error distribution, a closer look reveals that 
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the location of the maxima and minima of the two do not correspond closely.  The reasons for these are being 
investigated. 
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Figure 11: Error in axial velocity (a) True error on medium grid,  (b) Approximate error between fine and medium grid  
 

 

On the other hand, the average proportionality constants for the axial velocity are c1 = 2.12 and c2= 2.30 and 
for the vertical velocity c1 = 2.67 and c2=3.55 with the corresponding averages of 2.21 and 3.11.  When these 
factors are used the approximate errors still underestimate the true errors in magnitude, but the trends are 
similar. A quantitative comparison can be seen in Figs. 12 and 13 where the estimated error and true error are 
compared at selected locations. Here only the magnitudes are compared since the sign of the error may not be 
important in most applications. It is seen again that the trends are very similar but the magnitudes of true error 
is underestimated using the current method. In view of these observations, it can be concluded that in order to 
make a reliable statement on this case further investigation is needed.  
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Figure 12: Error in vertical velocity (a) True error  on medium  grid, (b) Approximate error between fine and medium grid
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Figure 12: Estimated true error in axial velocity at  

(a) x= 3.5m, (b) y=1m, (c) y=3.5m
Figure13: Estimated true error in vertical velocity at  

(a) x= 1.5m, (b) x=5m, (c) y=2m
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

A fairly simple error estimation method based on the original idea of Richardson extrapolation is proposed. 
This method assumes that, at least, in the asymptotic range the approximate error, i.e. the difference between 
consecutive solutions on similar grids, is proportional to the true error, i.e. the difference between the exact 
(usually unknown) solution and the numerical solution. The proportionality coefficient is calculated as an 
average value of the local coefficients calculated using a set of three numerical solutions on three different 
grids. The method is verified on 1D and 2D scalar transport, and applied to 2D Navier-Stokes equations for a 
parabolic type flow and also for a separated flow resembling that of flow over backward facing step. All 
indications are that this method gives reliable estimates of the error even on relatively coarse grids. The 
calculated constant of proportionality seems to be low for the cased involving Navier -stokes solutions. The 
reasons for this are currently being investigated. A temporary fix would be to use max(c1, c2) for conservative, 
and the average for nonconservative purposes. Another advantage of this method is interpolation errors that 
scale with the grid size can be automatically taken into account. 
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APPENDIX A 
 
The axial velocity, ub obtained from the stream function satisfying the boundary conditions, ψb, is  
  

                                     ( ) ( ) ( ) ( )1 1b b
b b b

f h
u g g

H
η η

ε ε
η η

 ∂ ∂
 = + −  ∂ ∂ 

 (A.1) 

 
where  
  

                                
( ) ( ) ( ) ( ) ( ) ( )

21 2
2 2 2sin cos 2 1 sinbf e α η π π πη

π η η α η η
η

− −∂
 = + − ∂

 (A.2) 

         

                                                           
( ) ( ) ( )2 2sin cosbh

π π
η

π η η
η

∂
=

∂
 (A.3) 

The function gb is given in Eq. (15). 
 
Similarly, the axial velocity obtained from the stream function satisfying the homogenous boundary 
conditions, ψs, is 
 

                                                              
( ) ( ),1 s

s s

f
u g

H
ε η

ε
η

 ∂
=  ∂ 

 (A.4) 

 
where  

                                  
( ) ( ) ( )( ) ( )22,

2 1 1 2 1s
s

f
A h

ε η
η ε η η η η η

η
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 (A.5) 

 
The function gs is given in Eq. (19). 
 
The axial velocity field is than obtained as; 
                                                          

                                                             b s
b su u u

y y y
ψ ψψ ∂ ∂∂

= = + = +
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 (A.6) 

 
Finally, the axial velocity expression takes the following form; 
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 (A.7) 
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Vertical velocity can be obtained in a similar manner;  
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The functions fb and hb appearing in Eq. (A.8) is given in Eq. (13) and Eq. (14) , respectively. 
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The functions fs and hs appearing in Eq. (A.10) is given in Eq. (17) and Eq. (18) , respectively.  
 
The vertical velocity field is than obtained as; 
 

                                                       b s
b sv v v

x x x
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 (A.14) 

 
Finally, the vertical velocity expression takes the following form; 
                    

                    
( ) ( ) ( ) ( ) ( ) ( ) ( ),1 1 ,b s s

b b s s

g f g
v h f g f

L L
ε ε η ε

η η ε ε η
ε ε ε

   ∂ ∂ ∂
 = − − +    ∂ ∂ ∂   

 (A.15) 

 
 
 
 
 
 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



A Reliable Error Estimation Technique for CFD Applications 

RTO-MP-AVT-147 32 - 19 

APPENDIX B 
 
The general mean momentum equation for a turbulent flow can be written in the following way  
 

( )2
3

1ji
j eff

i j i j

uuD u p k
Dt x x x x

υ ρ
ρ

  ∂∂∂ ∂
= + − +   ∂ ∂ ∂ ∂   

 (B.1) 

 
by incorporating an effective viscosity that is composed of a mean and a deviation from the mean. 
 

avg
eff eff effυ υ υ′= +  (B.2) 

 
X-component of the steady mean momentum equation can be written explicitly as 
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where the source term in x-component of the mean momentum equation, Sx is  
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Similarly, y-component of the steady mean momentum equation can be written in the form of 
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where the source term in y-component of the mean momentum equation, Sy is simply 
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Paper No. 32 
 

 
Discusser’s Name: Luis Eça 
 
 
Question: Is the local proportionality constant of the error estimation changing significantly in the 
field? Will the procedure handle the possible scatter existing in the data? 
 
 
Authors’ Reply: The constant does change within the field. The scatter does not seem to be as 
chaotic as that is usually seen in the p-data (i.e. apparent order). The norm, II II∞, applied in the 
procedure seems to work as a smooth filter. Other filtering approaches can be investigated further. 
 
 

 
Discusser’s Name: Chris Roy 
 
 
Question: Your approach is an alternative to Richardson Extrapolation, however you have not 
shown any comparisons to Richardson Extrapolation. How does your method compare to 
Richardson Extrapolation? 
 
 
Authors’ Reply: This is a valid point and should be done. However, a similar exercise, an extensive 
study, within the frame work of 2nd Workshop in CFD uncertainty in Lisbon (Eça and Hoeckstra, 
2006) has shown that Richardson Extrapolation has serious problems for the boundary layer 
problem and especially for the flow past a backward facing step (not the same as the present test 
case but very similar). 
 
 
 

 
Discusser’s Name: Ch. Hirsch 
 
 
Question: What is the range of validity of your approach on non-uniform grids? I guess that the 
same type of difficulties as with Richardson Extrapolation should appear. 
 
 
Authors’ Reply: The grid used in the present test cases were already non-uniform grids. Since the 
present method does not need the grid parameter explicitly, it is directly applicable to non-structured 
grids. An accurate interpolation scheme from fine grid to course grid is all it is needed. 
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